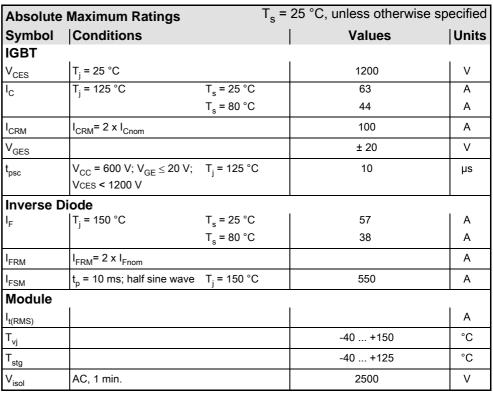
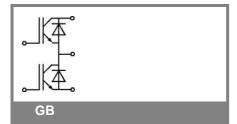
SK60GB128

IGBT Module

SK60GB128


Preliminary Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- High short circuit capabilit
- SPT= Soft-Punch-Through technology
- V_{ce,sat} with positive coefficient

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Characteristics $T_s =$			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,1	mA	
		T _j = 125 °C		0,2		mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			200	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1,1	1,3	V	
		T _j = 125 °C		1	1,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		16		mΩ	
		T _j = 125°C		18		$m\Omega$	
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}	1,7	1,9	2,3	V	
		$T_j = 125^{\circ}C_{chiplev.}$		1,9	2,3	V	
C _{ies}				4,46		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,33		nF	
C _{res}				0,21		nF	
t _{d(on)}				80		ns	
t _r	R_{Gon} = 15 Ω	V _{CC} = 600V		50		ns	
E _{on}		I _C = 50A		5,8		mJ	
t _{d(off)}	R_{Goff} = 15 Ω	T _j = 125 °C		420 40		ns	
t _f		V _{GE} =±15V				ns	
E _{off}				4,8		mJ	
$R_{th(j-s)}$	per IGBT				0,6	K/W	

SK60GB128

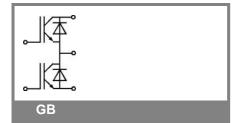
IGBT Module

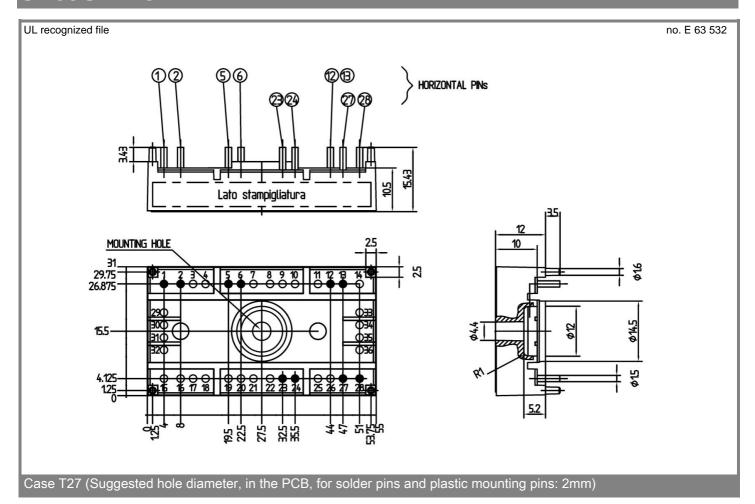
SK60GB128

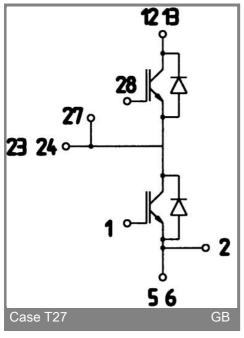
Preliminary Data

Features

- · Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB
- High short circuit capabilit
- SPT= Soft-Punch-Through technology
- V_{ce,sat} with positive coefficient


Typical Applications


- Switching (not for linear use)
- Inverter
- · Switched mode power supplies
- UPS


Characteristics									
Symbol	Conditions		min.	typ.	max.	Units			
Inverse Diode									
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		2	2,5	V			
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,8	2,3	V			
V_{F0}		T _j = 125 °C		1	1,2	V			
r _F		T _j = 125 °C		18	22	mΩ			
I _{RRM}	I _F = 50 A	T _i = 125 °C		40		Α			
Q_{rr}	di/dt = -800 A/µs	,		8		μC			
E _{rr}	V _{CC} = 600V			2		mJ			
R _{th(j-s)D}	per diode				0,9	K/W			
M_s	to heat sink M1		2,25		2,5	Nm			
w				29		g			

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

